503 research outputs found

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: • rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.• rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    STEM analysis of deformation and B distribution in nanosecond laser ultra-doped Si1−x_{1-x} Bx_x

    Full text link
    We report on the structural properties of highly B-doped silicon (> 2 at. %) realised by nanosecond laser doping. We investigate the crystalline quality, deformation and B distribution profile of the doped layer by STEM analysis followed by HAADF contrast studies and GPA, and compare the results to SIMS analyses and Hall measurements. When increasing the active B concentration above 4.3 at.%, the fully strained, perfectly crystalline, Si:B layer starts showing dislocations and stacking faults. These only disappear around 8 at.% when the Si:B layer is well accommodated to the substrate. When increasing B incorporation, we increasingly observe small precipitates, filaments with higher active B concentration and stacking faults. At the highest concentrations studied, large precipitates form, related to the decrease of active B concentration. The structural deformation, defect type and concentration, and active B distribution are connected to the initial increase and subsequent gradual loss of superconductivity

    The asymmetric diffusion of trust between communities: simulations in dynamic social networks

    Get PDF
    In this work, we present a model of social network showing non-trivial effects on the dynamics of trust and communication. Our model's results meet the characteristics of a typical social network, such as the limited node degree, assortativeness, clustering and communities formation. Simulations have been run first to present some of the most fundamental relations among the main model's attributes. Next, we focused on the emerging asymmetry with which trust develops within different communities in a network. In particular, we considered categories of nodes differing for their communication profiles and a specific example of bridge between two communities. The results are discussed to provide insights about the dynamic formation of communities based on trust relations. These results are the basis for future works with the aim of better understanding the dynamics of the diffusion of trust and its influence on a growing social network

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    Análisis de preferencias turísticas: un enfoque innovador

    Get PDF
    Most of the decisions concerning tourism are made in a context of uncertainty, and on several occasions the consequences of the choice are not known with certainty, or even there is missing information on this matter. For these reasons, the fuzzy set theory is an appropriate tool for their treatments.In this paper we show, through a case study, an alternative model for the analysis of tourist preferences of a segment of individuals based on the concept of fuzzy consideration set.La mayor parte de las decisiones referidas a turismo se toman en un contexto de incertidumbre, y en muchas oportunidades no se conocen con certeza las consecuencias de la elección, ni se posee toda la información. Por estas razones la teoría de conjuntos borrosos resulta una herramienta apropiada para su tratamiento.En este trabajo se presenta, a través del estudio de un caso, un modelo alternativo para el análisis de las preferencias turísticas, de un segmento de individuos, basado en el concepto de conjunto de consideración borroso

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    Piercing an interface with a brush: collaborative stiffening

    Full text link
    The hairs of a painting brush withdrawn from a wetting liquid self-assemble into clumps whose sizes rely on a balance between liquid surface tension and hairs bending rigidity. Here we study the situation of an immersed carpet in an evaporating liquid bath : the free extremities of the hairs are forced to pierce the liquid interface. The compressive capillary force on the tip of flexible hairs leads to buckling and collapse. However we find that the spontaneous association of hairs into stronger bundles may allow them to resist capillary buckling. We explore in detail the different structures obtained and compare them with similar patterns observed in micro-structured surfaces such as carbon nanotubes "forests".Comment: 9 pages, 6 figure
    • …
    corecore